Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Commun ; 13(1): 5814, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2050372

ABSTRACT

Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern.


Subject(s)
Antibodies, Bispecific , COVID-19 , Single-Chain Antibodies , Animals , Antibodies, Bispecific/genetics , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , Cricetinae , Humans , Immunoglobulin G/genetics , Mice , Neutralization Tests , SARS-CoV-2/genetics , Single-Chain Antibodies/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Sci Immunol ; 7(75): eabl9943, 2022 09 09.
Article in English | MEDLINE | ID: covidwho-1909566

ABSTRACT

Monoclonal antibodies are an efficacious therapy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, rapid viral mutagenesis led to escape from most of these therapies, outlining the need for an antibody cocktail with a broad neutralizing potency. Using an unbiased interrogation of the memory B cell repertoire of patients with convalescent COVID-19, we identified human antibodies with broad antiviral activity in vitro and efficacy in vivo against all tested SARS-CoV-2 variants of concern, including Delta and Omicron BA.1 and BA.2. Here, we describe an antibody cocktail, IMM-BCP-01, that consists of three patient-derived broadly neutralizing antibodies directed at nonoverlapping surfaces on the SARS-CoV-2 Spike protein. Two antibodies, IMM20184 and IMM20190, directly blocked Spike binding to the ACE2 receptor. Binding of the third antibody, IMM20253, to its cryptic epitope on the outer surface of RBD altered the conformation of the Spike Trimer, promoting the release of Spike monomers. These antibodies decreased Omicron SARS-CoV-2 infection in the lungs of Syrian golden hamsters in vivo and potently induced antiviral effector response in vitro, including phagocytosis, ADCC, and complement pathway activation. Our preclinical data demonstrated that the three-antibody cocktail IMM-BCP-01 could be a promising means for preventing or treating infection of SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2, in susceptible individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Cricetinae , Humans , Spike Glycoprotein, Coronavirus/genetics
3.
Clin Infect Dis ; 74(6): 1081-1084, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1707490

ABSTRACT

The clinical significance of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) RNA in stool remains uncertain. We found that extrapulmonary dissemination of infection to the gastrointestinal tract, assessed by the presence of SARS-CoV-2 RNA in stool, is associated with decreased coronavirus disease 2019 (COVID-19) survival. Measurement of SARS-CoV-2 RNA in stool may have utility for clinical risk assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Feces , Gastrointestinal Tract , Humans , RNA, Viral , SARS-CoV-2/genetics
4.
J Am Chem Soc ; 143(42): 17615-17621, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1467046

ABSTRACT

Cellular binding and entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are mediated by its spike glycoprotein (S protein), which binds with not only the human angiotensin-converting enzyme 2 (ACE2) receptor but also glycosaminoglycans such as heparin. Cell membrane-coated nanoparticles ("cellular nanosponges") mimic the host cells to attract and neutralize SARS-CoV-2 through natural cellular receptors, leading to a broad-spectrum antiviral strategy. Herein, we show that increasing surface heparin density on the cellular nanosponges can promote their inhibition against SARS-CoV-2. Specifically, cellular nanosponges are made with azido-expressing host cell membranes followed by conjugating heparin to the nanosponge surfaces. Cellular nanosponges with a higher heparin density have a larger binding capacity with viral S proteins and a significantly higher inhibition efficacy against SARS-CoV-2 infectivity. Overall, surface glycan engineering of host-mimicking cellular nanosponges is a facile method to enhance SARS-CoV-2 inhibition. This approach can be readily generalized to promote the inhibition of other glycan-dependent viruses.


Subject(s)
COVID-19 Drug Treatment , Heparin/administration & dosage , Nanostructures/therapeutic use , Polysaccharides/administration & dosage , SARS-CoV-2/metabolism , COVID-19/virology , Heparin/metabolism , Humans , Polysaccharides/metabolism
5.
Adv Healthc Mater ; 10(22): e2101370, 2021 11.
Article in English | MEDLINE | ID: covidwho-1449905

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic demonstrates the importance of generating safe and efficacious vaccines that can be rapidly deployed against emerging pathogens. Subunit vaccines are considered among the safest, but proteins used in these typically lack strong immunogenicity, leading to poor immune responses. Here, a biomaterial COVID-19 vaccine based on a mesoporous silica rods (MSRs) platform is described. MSRs loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF), the toll-like receptor 4 (TLR-4) agonist monophosphoryl lipid A (MPLA), and SARS-CoV-2 viral protein antigens slowly release their cargo and form subcutaneous scaffolds that locally recruit and activate antigen-presenting cells (APCs) for the generation of adaptive immunity. MSR-based vaccines generate robust and durable cellular and humoral responses against SARS-CoV-2 antigens, including the poorly immunogenic receptor binding domain (RBD) of the spike (S) protein. Persistent antibodies over the course of 8 months are found in all vaccine configurations tested and robust in vitro viral neutralization is observed both in a prime-boost and a single-dose regimen. These vaccines can be fully formulated ahead of time or stored lyophilized and reconstituted with an antigen mixture moments before injection, which can facilitate its rapid deployment against emerging SARS-CoV-2 variants or new pathogens. Together, the data show a promising COVID-19 vaccine candidate and a generally adaptable vaccine platform against infectious pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Antibodies, Viral , Biocompatible Materials , COVID-19 Vaccines , Humans
6.
Cell Host Microbe ; 29(9): 1437-1453.e8, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1347535

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Dependovirus/genetics , Dependovirus/metabolism , Female , Humans , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology , Transgenes/genetics , Vaccination/methods , Viral Load/immunology
7.
Cell ; 184(19): 4969-4980.e15, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1333275

ABSTRACT

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.

8.
JCI Insight ; 6(1)2021 01 11.
Article in English | MEDLINE | ID: covidwho-1066996

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coupled with a lack of therapeutics, has paralyzed the globe. Although significant effort has been invested in identifying antibodies that block infection, the ability of antibodies to target infected cells through Fc interactions may be vital to eliminate the virus. To explore the role of Fc activity in SARS-CoV-2 immunity, the functional potential of a cross-SARS-reactive antibody, CR3022, was assessed. CR3022 was able to broadly drive antibody effector functions, providing critical immune clearance at entry and upon egress. Using selectively engineered Fc variants, no protection was observed after administration of WT IgG1 in mice or hamsters. Conversely, the functionally enhanced Fc variant resulted in increased pathology in both the mouse and hamster models, causing weight loss in mice and enhanced viral replication and weight loss in the more susceptible hamster model, highlighting the pathological functions of Fc-enhancing mutations. These data point to the critical need for strategic Fc engineering for the treatment of SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19/immunology , Immunity, Innate/drug effects , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , COVID-19/physiopathology , Cricetinae , Cross Reactions , Epitopes , Humans , Immunity, Innate/immunology , Immunoglobulin G/genetics , Immunoglobulin G/therapeutic use , Mesocricetus , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/immunology , Protein Engineering , Receptors, Fc/immunology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , THP-1 Cells , Viral Load/drug effects , Weight Loss/drug effects , COVID-19 Drug Treatment
9.
Nano Lett ; 20(7): 5570-5574, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-604507

ABSTRACT

We report cellular nanosponges as an effective medical countermeasure to the SARS-CoV-2 virus. Two types of cellular nanosponges are made of the plasma membranes derived from human lung epithelial type II cells or human macrophages. These nanosponges display the same protein receptors, both identified and unidentified, required by SARS-CoV-2 for cellular entry. It is shown that, following incubation with the nanosponges, SARS-CoV-2 is neutralized and unable to infect cells. Crucially, the nanosponge platform is agnostic to viral mutations and potentially viral species, as well. As long as the target of the virus remains the identified host cell, the nanosponges will be able to neutralize the virus.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Nanostructures , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Membrane/virology , Coronavirus Infections/virology , Epithelial Cells/virology , Host Microbial Interactions , Humans , Lung/cytology , Lung/virology , Macrophages/virology , Nanostructures/ultrastructure , Nanotechnology , Pneumonia, Viral/virology , Receptors, Virus/physiology , SARS-CoV-2 , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL